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Abstract. In these notes, we explore a bit the ideas of O. Kurka [1] of how to prove that, given

a f ∈ BV [R), then Mf ∈ BV (R) with BV−norm bounded by a constant multiple of that of f .

1. Introduction and Main Ideas

First of all, it is useful to answer why the dramatic difference between the centered and uncen-
tered cases.

The straight-out answer to this question is fairly simple: as presented by Marco, the uncentered
maximal function satisfies a “magic” property: if it attains a (local) maximum at a point, then so
does f , and both of them coincide at that point.

This fantastic property unfortunately does not hold for the centered maximal function: think,
for instance, about what happens when we take f = χ(0,1) + χ(2,3). Nonetheless, as Kurka [1]
showed, the property still holds, but now with a constant much worse than in the uncentered
case: in the latter, Cuncentered = 1, while in the former one one only knows that the best constant
satisfies Ccentered ≤ 240, 004.

If we cannot use Aldaz and Pérez-Lázaro’s ideas, then what should we do to prove it? First of
all, one does not even need to move much further away from their paper to get a flavour of what
is being done here: besides proving the mapping from BV to itself of the uncentered maximal
function, they prove also that the uncentered maximal function actually improves the regularity
of a function: if f ∈ BV , then its uncentered maximal function is an absolutely continuous function.

The way they do it is by contradiction, usind the Banach-Zarecki Theorem (as pointed in the
end of last lecture by Marco): suppose m(N) = 0 but m∗(Muncenteredf(N)) > 0. Then, for a
suitably fine partition of the real line P, one might refine it to obtain

V(f ;P) +
1

8
m∗(Muncenteredf(N)) ≤ V(f ;P ′),

where P ′ is the refinement of P. It is somehow difficult to realise, but a similar procedure is being
used in Kurka’s work: roughly, his techniques might be divided into the following steps:

(A) For a given partition, one would like to decompose it into peak structures. One might
further distinguish them into essential and non-essential peaks. As the name suggests, the
non-essential ones may be handled in an easy way, leaving us to work with the essential
peaks.

(B) As these essential peaks might be randomly distributed within the partition under consid-
eration, one would like then to divide them into subsets, so that they look fairly similar
inside these subsets. One is then able to prove that the variation of the centered maximal
function within each of those sets is, in a certain sense, almost controlled by the variation
of the function within those sets.

(C) The division into those sets is done by a layer dyadic decomposition according to the radius
of the top of a peak. As the decomposition is dyadic, it makes sense to talk about the scale
of these peaks.

(D) The next step is then not more than Aldaz and Pérez-Lázaro’s idea for the BV → AC
mapping of the uncentered, together with an induction on scales argument: roughly, if
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there is a partition P of the real line whose elements are all separated by at least L, then
one might refine it so that the new partition P ′ has elements at least L

1024 appart from one
another, and

V(f ;P) +
1

5
Vn ≤ V(f ;P ′),

where Vn denotes the variation of the centered maximal function over the peaks of scale n.

Of course, there are many inaccuracies and oversimplifications in the prototypical process de-
scribed above, and things get much more technical once one starts to work hands-on to understand
Kurka’s work, but the guideline for possible generalizations should be along these lines. Moreover,
the author remarks in his work that this scheme did not arise from nothing, from the beginning:
the original idea was to use the first Lemma below to prove it, possibly even with the (conjectured)
sharp constant. His attemps, however, were not fruitful, and the procedure above was the way he
found to do it in the end.

The rest of the notes is divided as follows: In Section 2, we define rigorously our basic peak
structures and how to divide them into simpler groups, together with the specific estimates one
has for those groups. In Section 3 we state our main strategy to deal with the interaction between
different scales, and in Section 4 we give a sketch of proof (in one of the cases) of the induction on
scales Lemma we will be using.

2. Peaks and groups of peaks

First of all, let us focus on what we want: we wish to bound the variation of the centered
maximal function – denoted from now on by M – over a given partition P by a constant times the
variation of the function under consideration. Let this partition be P = {x1 < x2 < x3 < · · ·xN}.
We also assume that this partition is not redundant, in the sense that Mf(x2i+1)−Mf(x2i) has
always the same sign as Mf(x2i)−Mf(x2i−1).

We also remark that, without loss of generality, one has that Mf(x1) ≤ Mf(x2) ≥ Mf(x3) ≤
· · · . This leads directly to the definition of a peak:

Definition 1. A system of 3 points p = {p < r < q} is a peak if Mf(r) > max{Mf(p),Mf(q)}.
Moreover, we call a peak p essential if

sup
y∈[p,q]

f(y) ≤Mf(r)− 1

4
V(p).

Here, V(p) = 2Mf(r)−Mf(q)−Mf(p).

It is an easy task – that we leave to the reader – to verify that, if P is an arbitrary collection
of non-essential peaks, then V(P) ≤ 8V(f). So we will focus only on the essential ones. It is also

easy to notice that, for an essential peak p, the minimal radius w(r) such that −
∫ r+w(r)

r−w(r)
f = Mf(r)

is well-defined, and r − w(r) < p < q < r + w(r).

We can now define the decomposition of our peaks: suppose we reduced our partition P to one
only with essential peak systems, which we call again P. Denote

50L0 = max{w(ri), ri is the top of pi ⊂ P}.
We perfom the promised dyadic decomposition: Ln = 2−nL0, and we first let Pn be the set of peaks
pi for which w(ri) ∈ (25Ln, 50Ln]. Still, these might be quite randomly distributed across the real
line, and we therefore further specify them into the sets Pn

k ⊂ Pn such that ri ∈ (kLn, (k+ 1)Ln].
This might be understood as a reduction to a suitable dyadic model.

To prove that it is at least interesting giving this decomposition a chance, we have the following:

Lemma 1. Let [a, b] be an interval of length L and P = {pi, 1 ≤ i ≤ m} a system of essential
peaks such that:
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• ri ∈ [a, b], i = 1, . . . ,m;
• qi ≤ pi+1, i = 1, . . . ,m− 1;
• w(ri) ∈ (25L, 50L], i = 1, . . . ,m.

Then there are s < u < v < t such that

• a− 50L < s < t < b+ 50L;
• u− s, t− v ≥ 4L, u− v ≥ L

and also

min{f(s), f(t)} − −
∫ v

u

f ≥ 1

12
V(P).

Although the proof of this Lemma is interesting, we cannot restrict our attention to it here.
We remark two things, however: the first one is that, after this Lemma, we basically never use
any property of the maximal function again. That is, the next steps of the proof are completely
general and do not depend on the particular structure of the maximal function. The second is that
the proof of this fact uses essentially only one property of the maximal function, which we bring
to light due to its possible importance in future related work:

Property 1. Let r ∈ R and w(r) the radius of Mf(r), as defined above. Let moreover r−w(r) <
p < r be such that Mf(p) ≤Mf(r). Then we can find 2p− (r − w(r)) < t < r + w such that

f(t) ≥Mf(p) +
Mf(r)−Mf(p)

r − p
· w(r) ≥Mf(r).

A similar statement holds for if r < s < r + w(r) and Mf(q) ≤Mf(r).

By using Lemma 1 with the sets Pn
k , we can already get the estimate

V(Pn
k ) ≤ 12V(f ; ((k − 50)Ln, (k + 51)Ln]).

Unfortunately, this is not yet good enough in order to sum up and obtain the result: in fact, this
estimate only takes care of single-scale terms, and ignores the interaction between scales. This
leads to the idea of trying to bootstrap the scale n+ 1 once one has bounds for scale n.

3. Scale interaction and dichotomy

As promised, we will now get rid completely of the maximal function:

Lemma 2. Let Λnk be a doubly-indexed sequence of nonnegative real numbers, of which only a
finite set is non-zero. Let also L0 > 0 and Ln = 2−nL0. Suppose now that, whenever Λnk > 0, then
there are reals s < u < v < t such that

• (k − 50)Ln ≤ s < t ≤ (k + 51)Ln;
• u− s, t− v ≥ 4Ln, u− v ≥ Ln,

and, in addition,

min{f(s), f(t)} − −
∫ v

u

f ≥ Λnk .

Then ∑
n,k

Λnk ≤ 20000V(f).

Obviously, this is exactly what we need to proceed. To prove this, we have, however, to
distinguish two cases: the first models when f(s), f(t) are particularly big inside the interval
((k − 50)Ln, (k + 51)Ln], and the other when the average −

∫ v
u
f is particularly small in comparison

with the rest of the points in the interval. Rigorously stated, we have the following dichotomy:

Lemma 3. Let n ≥ 0, k ∈ Z,Λnk > 0. Then one of the following holds:

(A) There is a 6-point system (k − 50)Ln ≤ s < α < β < γ < δ < t ≤ (k + 51)Ln such that
they are all at least Ln apart from one another, γ − β = 2Ln, and

min{f(s), f(t)} −max

{
−
∫ β

α

f,−
∫ v

u

f

}
≥ 1

2
Λnk .
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(B) There is a 6-point system (k − 50)Ln ≤ α < β < u < v < γ < δ ≤ (k + 51)Ln such that
they are all at least Ln apart from one another and

min

{
−
∫ β

α

f,−
∫ δ

γ

f

}
−−
∫ v

u

f ≥ 1

2
Λnk .

Therefore, the most reasonable thing to do is to call the pairs (n, k) such that condition (A) holds
as belonging to the set A, and the same for B. Furthermore, as we want to use some disjointness
within scales, we further divide the k in a same scale n into the sets AnK = {k; (n, k) ∈ A and k = K
mod 200}.

We remark that this division is a merely technical asumption, as a thorough scrutiny of the
proof contained in [1] reveals that both cases share the same basic outline for the proof of their
boundedness. However, the approaches seem not to be treatable at the same time by the same
technique, but this will not prevent us from only visiting the proof of boundedness for systems in
A.

4. An Induction on scales argument

The strategy now is simple: in order to run the argument and take advantage of some sort of
disjointness, we will induct on η, where n = 10η + b, and k = K mod 200. Those assumptions
being made, we move on to the following procedure: suppose that we have a 1024Ln−separated
system of points

X1 < U1 < V1 < X2 < · · · < XM .

Then we claim that we can find a system of Ln−separated points

x1 < u1 < v1 < x2 < · · · < xm

such that

(1)

m−1∑
i=1

[
f(xi) + f(xi+1)− 2−

∫ vi

ui

f

]
≥
M−1∑
I=1

[
f(XI) + f(XI+1)− 2−

∫ VI

UI

f

]
+

1

5

∑
k∈An

K

Λnk .

This is more or less what we referred to in the introduction as point (D) in our strategy. Of
course, this procedure is merely a device to induct: we will generally assume that the system
X1 < U1 < · · · < XM already satisfies an inequality like

M−1∑
I=1

[
f(XI) + f(XI+1)− 2−

∫ VI

UI

f

]
≥ 1

5

∑
l≤n−10,
k∈Al

K

Λlk.

Of course, as we are dealing here with finite structures, there is an N0 such that AnK 6= ∅ ⇒ n ≤ N0.
We use then our procedure until we reach this N0. What we obtain, in the end, is that∑

n=N mod 10,
k=K mod 200

Λnk ≤ 5V(f).

Summing in N over all residue classes mod 10 and in K over all residue classes mod 200, one
obtains the desired result, with constant equal to 10000 (the other 10000 coming from the case we
are omitting).

Proof of the induction argument in (1). Step 1: For every k ∈ AnK , one selects a Ln−separated
system (k − 50)Ln ≤ sk < αk < βk < tk ≤ (k + 1)Ln, such that

min{f(sk), f(tk)} − −
∫ βk

αk

f ≥ 1

2
Λnk

and, for all 1 ≤ I ≤M,

dist(XI , (αk, βk)) ≥ Ln.
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This is possible due to the separation conditions we have on our systems. Finally, call an interval
(a, b) orthogonal to some k ∈ Z ((a, b) ⊥ k) if (a, b) is at least Ln apart from ((k−50)Ln, (k+51)Ln].

Step 2: We will skip the details, but, even without using the systems sk < αk < βk < tk
constructed above, one is able to prove the following: there is a subset S ⊂ AnK for which one can
find a Ln−separated system y1 < c1 < d1 < · · · < yj such that

• (ci, di) ⊥ l, ∀l ∈ AnK\S, ∀i = 1, ..., j − 1;
• dist(yi, (αl, βl)) ≥ Ln, ∀l ∈ AnK\S, ∀i = 1, ..., j,

and
j−1∑
i=1

[
f(yi) + f(yi+1)− 2−

∫ di

ci

f

]
≥
M−1∑
I=1

[
f(XI) + f(XI+1)− 2−

∫ VI

UI

f

]
+

1

5

∑
k∈S

Λnk .

Step 3: Finally, one adds the remaining elements one by one: let y1 < c1 < d1 < · · · < yj
obtained from the previous step, and pick k ∈ AnK\S. We know, by Step 2, that things are well
spaced, and that is, essentially, what will allow us to build our new scale.

In fact, as (ci, di) ⊥ k ⇒ the interval ((k − 50)Ln, (k + 51)Ln) is contained in R\ ∪i [ci, di]. Let
then yt(k) be the element belonging to the same connected component that covers ((k−50)Ln, (k+
51)Ln). Now, replace yt(k) by a system s′k < αk < βk < t′k, where αk, βk are the ones selected
above. As one would expect, s′k equals sk when either yt(k) > αk − Ln or f(yt(k)) < f(sk), and
equals yt(k) otherwise. One picks t′k in a completely analogous manner.

Step 4: Checking that the system obtained by this substitution has at least the variation of the
previous one +Λnk is a simple task, and we therefore skip it. One has also, by the way we picked
our points, that this newly obtained system satisfies the properties of Step 2. We then run Step 3
over, and this yields a system with the required properties, for all k ∈ AnK . This finishes the proof
of the induction scheme, and, therefore, of the main Theorem. �
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